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In this work some general considerations are presented with respect to the cons~uction 

of an approximate solution to spatial mixed problems in the theory of elasticity. The 

axisymmetric problem is used as an example. 

For the solution a structure is proposed which permits to satisfy exactly mixed bound- 

ary conditions of a certain type. In addition, this structure contains a series of arbitrary 
functions the selection of which can be made such that the system of differential equa- 
tions for the eq~~brium of the elastic body is satisfied in the best possible manner (in 
one sense or another). 

The analyses are based on the utilization of R-functions n] which makes it possible 
to examine practically any real three-dimensional bodies. The question of the founda- 
tion of the method is not discussed. 
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1. Let us examine a system of functions H fcpi (z,,~)} (i = 1,2,...,n) belonging to the 
class C@). The system is called the H-system of base functions. We shall utilize this 

system in the subsequent construction of coordinate sequences. Just as in paper r2], the 
functions which can be constructed with the aid of this base system will be called ‘H- 

realizable. The set of H-realizable functions are designated by the symbol M(H). 

For any function f(s,, z.J E M(H) it is possible to find in the plane qz, some corre- 
sponding figure L which is determined by the equation /(xi, Q) = 0. (The figure may 

turn out to be an empty set). The figure L is called an H-realizable figure. The set 
of H-realizable figures is designated by IV(H). 

In the plane qq the set of domains defined by an inequality of the form 

f(x,, 4 > 0, fb, ~2) E fif(H) (1.1) 

will be called the set of H-realizable domains and denoted by the symbol G(H). 

It is apparent that the sets M(H), N(H) and G(H) are completely determined for a 
given base system of functions H{qi(Zl,sz)) (i = 1,2,..., n). 

In papers p, 21 the concept of algorithmic completeness of the system H of base func- 

tions is introduced and it is shown that if the system is algorithmically complete, then 

with the aid of this system we can write the equation for any figure. 
If the following functions are taken as the system H 

%(%,4 = x1 + x2, (pz(x1.d = x1x2 

(p3(x1,x2) =vz (xl+x2-Vx1~+ 22- 2zx122j(x,?+ xz2)'f2k 

94 (x1, 22) = */2 (ccl+ x2 + v/212 + 222 - 2az~sz)-(sl2 j- z22p (1.2) 

- 1 < a < 1: cps(z+2) = Zl = - Xl, ql (w2) 

(P7 (%,X2),..., (Pn (%r~2), cpi (x17 12) E c (Ir) (i = 6,7,..., n) 

then the system turns out to be algorithmically complete in the class Cc”). This makes 
it possible to construct the function o(xl,x2) E M(H) which becomes zero at points 
(and only at points) of any prescribed figure L E N(H). Numerous examples for the con- 

struction of the function o(x,,q) for closed and open curves are presented in papers /J-- 

- 51. 
In paper [5] a general algorithm is given for the construction of the function 01 EM(H) 

which satisfies the following conditions 
4x1, 4 = 0, doldv = 1, (x,, x2) E L (1.3) 

W(XI, ~2) > 0, when (xi, x3) E (S) (1.4) 

where Y is the direction of the internal normal to the curve L. (We note that the second 

4 

~ 

condition (I.. 3) has a meaning for points which are not cor- 

01 
ner points). By (S) we shall denote an H-realizable domain 

Y 
bounded by an H-realizable closed curve. In the case 

r where the curve L is open, (S) will be taken as the part 

0 XT, 
of the plane lying to the right or to the left of the curve. 
Sometimes it is conveneient to consider the figure L as 
the sum of figures Li(i = 1,2,..., p). In this case only on 
Li will the functionw(x,, x2) = 0 be supplied with the 

Fig. 1 
index i. 

On the curve L a system of coordinates (v, O,, T) is 
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selected so that for an observer looking along the direction 0,~ the axis 0,~ will be 
pointing to the left (Fig. 1). 

.Z 
Let us introduce the operators of differentiation 

aw a aw a --- -- *l - ax1 a21 + ax2 ax2 

ao a a0 a 
T1=azlaz-azzazl 2 

(1.5) 

Cf.61 

It is not difficult to establish that they have the follow- 
ing properties 

ol(qL= wav, DI (o),~ = 1 (1.7) 

T,(u)l~ = duldr, T,(o) = 0 (1.8) 

Fig. 2 

In fact, by virtue of the second condition (1.3) we have 

dco 
z,L= [Igrad 01~0s (v, 41L= av aocos(v,.1)= cos(v, 21) 

(1.9) 
(I grad o 1 on L is equal to do/&, since o = 0 is one of 

the level curves of function o(+ ~~2)). By analogy we find that 
60 

azz\L = cos (v, ss) (2.10) 

Consequently, 
Dl(u)IL= ~cos(v,.,)+ g2 cos(v, x2) =$ 

TI(u)(~ = ~2cos(v,z~) - glcos(v. x2) = g 

The second equalities in formulas (1.7) and (1.8) are obvious. Operators D, and T, 
are linear 

&(u + v) = %(u) + Dl(v), T,(u + t.) = T,(u) + T,(v) 

and it is easy to verify that the formulas for product differentiation are applicable to 

these ol’=ators Dl(uv) = Dl(u)u+ uDl(v), T,(w) = T,(u) D+ UT,(U) 

Frequent use will be made of these operators. 

2. In the cylindrical system of coordinates (r, (p, z) let us examine the axisymmet- 

ric problem of the theory of elasticity for a body which is obtained by revolution of the 

H-realizable curve L around the axis oz (Fig. 2) under the conditions 

uz (T,Z) = zP(r, z) 

o*(r,z) = onV,z) 

rn(r,z) =G” (r, z) 

on (h) (2.1) 
011 (S,) (2.2) 

on (S) (2.3) 

where uZ is the displacement along the z-axis, and t,and u,,are the tangential and the 

normal stresses. 
We set u1 = Z+ and u2 = u,,in addition to this let (S) be the surface bounding the 

body of revolutior (JJ) ;(S,)and (S,) are the parts (aec) and (cda) of this surface, n is the 
direction of the external normal. With respect to the given functions u’, on0 andz,” it 
will be assumed that the first one is continuous and the other two are piecewise continu- 
ous, Boundary conditions of this type are applicable for example to contact problems 

C61. 
The problem will consist in finding such a structure of functions u1 and u2 which will 
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satisfy the boundary conditions (2.1) and (2.3). Furthermore, this structure should have 

a certain degree of freedom so that within the framework of this structure of solution it 
will be possible to approach to any degree the functions from a class of functions which 

satisfy mixed boundary conditions (2. I) and @. 3). 
The boundary conditions (9.2) and (2.3) are written in the expanded form 

12.4) 

p L$ cos (n, 2) f -$3s(n,r)+ g cos (n, r) + I ==m” (I; z) on (S) (2.5) 

Conditions (2.4) and (2.5) written above are extended in a cont~uous manner into 

region (I’) by means of operators (1.5).(1.6) and Eqs. (1.9), (3. lo) 

Here 

0 @, 2) =o, ac@/av=1, when (f, 2) E (4 

05 (r, 2) = 0, ho&N = 1, when fr, a) E (&I (2 = I,21 

Functions o and D$ are strictly positive in the domain (V) ; tpxe and so are so far com- 
pletely arbitrary functions. The functions Fi and F2 realize the continuous extension of 

functions o,Oand z,,” into the domain (V) and consequently have the properties 

FL = 0," on (&I, Iz, = z,” on (8) (2.9) 

In contrast to (2.4) and (2,5), the relatlonshi~ (2.6) and (2.7) are valid everywhere 

inside the domain (I’). By virtue of relationshfps (1, ?f, (I, 10) and f2.9) they transform 

on the boundary of the domain into boundary conditions (2.4) and (2.5). 

3. We have the solution of the problem in the form 

Ut = 911 r L4Jlz, %? = h + 4%3 (3.9 

where *ii are some functions with respect to which we assume that they are no less than 
twice continuously differentiable in the domain (VI. 

In order to satisfy the first of the boundary conditions of the problem, it is sufficient 
to assume 11’21 = f@,s) -t- %a3 

where f(r, z) is a function in the domain (Y) which can be differentiated continuously 
the required number of times and which satisfies the condition 

ffr, 2) = rPfr,z), when fz,z) E (S,) 

Substituting functions (3.1) into relationships (‘2.6) and (&7). taking into account the 
properties of operators R, and T,, we find 
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Bw 
@a= Fa- - Dx N’d ar - - Tl(~11) -$+ - TX ($a) -$ 1 (3.5) 

S IIUX? 
a% -= 

I 
1 

dv % 

the f&owing equation applfes in the domain (V) : 

L&(o) = 1 + 63x0 = 1 i- f%."f.l (34 

where xo and ~1 are known functions, 

If we take advantage of Eq. (2.6) and the arbitrariness of functions cplo and q2,,, then 

relationships (3.2) and ($3) can be written in the form of a system of equations for 

functions %s and $= 
(h-j- 2p) $I% +- f ?&2 = ml + QkWl 

where wI and %1 are new arbitrary functions which were obtained as a result of combin- 

ing terms with factors w and 02. 

The determinant of this system 

A=r(~+2~)[~~)t+(~)a]=p(hf2p)lgradoi’ 

is a hnction of (r, z) which in the domain (V) is different from zero everywhere with 

the exception of points of t.he extremum and the saddle 

The formal solution of this system has the form 

i $12 = L\ [(i. + 2p) (@, + Wqkl) + -trzPr 

points of the function CO. 

P-8) 

It is easy to verify that the formal solution (3,8),(3.9) alsa applies at those points at 

which A = 0. In fact, since points at which A = 0 lie inside the region (V) and since at 
these points CO and wg are different from zero, it is sufficient to select the arbitrary func- 

tions vX1 and qspzl in the form 



346 V. S. Protsenko and V, L. Rvachev 

1 
(p11= 

~2 (r0,z0) 
[---~I+ A(Q+oacpu)] (3.10) 

1 
qkl = 

0 (To, 20) 
r-~~+A(~~+~~3~)] 

where vsl and cp,, are new arbitrary functions, A(r,,x,) is the point at which A = 0. 
We note that for such a selection of functions ~11 and ‘pzl the formal solution of system 

(3.7) retains its form at those points also at which A = U. If there are n such points. 

then it will be necessary to subject functions vrl and ‘pzl to n conditions of the type(3.10), 
while the form of the solution remains the same. However, in practice it will not be 

necessary to do that, because solution (3.8), (3.9) can be substantially simplified if we 
take into account that 

A=p((h.f2p)+-~X_ or += p(h.;2p) -t_ q3, 

where ~2 and x3 are known functions. 

Rearranging terms which contain (t) and W* in (3.8),(3.9) we find 
1 

ZllZ = 
p(h+ w 

(3.11) 

(3.1’) 

where (pss and v3p are arbitrary functions as before. 

The solution of system (3.7) written in the form (3.11),(3.12) now does not contain 
the function A in the denominator (the function A is eliminated through an appropriate 

selection of arbitrary functions which enter into the initial form of the solution) and has 
a meaning everywhere in the domain (VJ. 

The functions tc, and z+, depend on two arbitrary fundamental functions $rl and ~&a and 
two arbitrary auxiliary functions qS3 and qsr In this case all boundary conditions of the 

problem will be satisfied. The arbitrariness of functions +ij will be utilized in satisfying 
Lame’s system of equations. 

If functions $Q which enter into the structure of functions ur and u2 are expanded in 

series with respect to some complete orthonormalized system of functions and if a finite 
number of terms is retained in the expansions, then two sequences of functions uik) and 
u:@) are obtained which satisfy all conditions of the mixed problem, 

Leaving aside for a while important questions with regard to the proof of completeness 

of sequences Uik) and U(b) let us just point out that the proposed structure of the solu- z ’ 
tion has some properties of complete systems. 

For this purpose we write the equation of distribution of normal stress on the region (8,) 

here a)35 is some function. 
In the last equation functions qrr and 1pS3 are represented in the foIlowing form : 

(3.13) 

where $z~“ij are some new functions. Elementary transformations lead to the relationship 

(3.14) 
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aa, 803 &$I, -- 
+ ar a2 t TIT + ~~+~~~~+ -g- 4=4f2~W 

From the last equation it is clear that the arbitrariness of function &, and conse- 
quently of functions *I1 and & , is quite sufficient in order to ensure the necessary values 

of the normal stress o, on the region (8,). 

Note. The axial symmetry of the problem is preserved if the condition (2.1) is 
replaced by the condition replaced by the condition 

Fig. 3 

u1(r.,z) = lP(r,z) on (S,) (3.15) 

where (3,) is the region of (S) shaded in Fig. 3. For this case 

everything presented above retains its validity, only function 

f should be set identically equal to zero and function &i 
should be selected in the form 

911 = f&A + vh* (3.16) 

where fl(r,z) = uO(r,z), when (r,z) E (S,). 
It should also be noted that since the extension of function 

no@, z) into the domain (1’) can be accomplished by many 
methods, it is somehow necessary to utilize this freedom in a 
reasonable way. It is possible for example to accomplish the 
extension in such a manner that the derivatives of the function 

f(r, z) will have the same singularities as the function which 

is sought at corner points or at points of boundary condition separation. In this manner 
it is possible to introduce into the approximate solution some fundamental features of 
the exact solution. This apparently decreases the “loading” on the function *ij+ 

Sometimes it is possible to take as the function f( r, Z) the exact solution of a problem 

which is close to the problem under investigation. For example, in the problem of a 
cylinder of finite height which is compressed at the ends by rigid punches it is possible 

to take as function f(r,z) the solution of the problem for a layer which is compressed 

(Iby; two punches of the same kind. 

In the second part of this paper examples of solutions will be presented for some con- 
crete problems with computations performed on a digital computer. 
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